Tag Archives: Thermal Bridges

Infrared Thermal Imaging to detect Air-Leakage and Thermal Bridges


Whereas a blower door test can test how air tight a building is, infrared cameras are not able to give you an actual performance or score of your house, but they can show you where thermal bridges occur.

In Europe, infrared cameras are often used to locate the misapplication of materials and resulting thermal bridges. The lighter the colour the warmer the materials, the darker the colour the colder the materials. Great differentiation between colours means great temperature difference.

The first picture below shows a typical German home. Although double glazing and thermally improved window frames are used, the windows have a lower U-value than the walls, as the required U-value for the external walls is 0.24 W/(m²K) and the U-value for the windows 1.10 W/(m²K). Expectedly, the windows present in a darker colour as they let more heat escape through them than the walls. Determining if a thermal bridge is within the allowed limits requires meticulous measurements and comparison of internal and external material and air temperatures, humidity levels and following calculations of heat transfer. In this particular case, the thermal bridges occurring due to different U-values are within the allowed limits.


Thermal Bridges And Ventilation Overseas

thermal bridges
In Europe, strict regulations are in place to control thermal bridges and air-leakages to minimise the energy needed for heating and cooling. Furthermore, due to the colder climate, a lot of structural damage can occur if heat and vapour is able to ‘travel’ through building materials.

Unlike in Europe, the significance of avoiding gaps and thermal bridges is commonly unknown and not a regulatory requirement in Australia. Common practice often shows that there is barely attention paid to minimising gaps and thermal bridges, leading to unwanted thermal bridges and air-leakages and therefore increases the need for cooling and heating.

Requirements to minimise thermal bridges
Maximum values of heat transfer through thermal bridges are specified and need to get incorporated into the energy ratings. Windows and doors as well as junctions of different building parts and materials require much detailing during the working drawing stage, as well as on the building site. It’s the architect’s/designer’s responsibility to find and draw solutions to overcome thermal bridges, and the builder’s to build accordingly.

Although air-leakages and thermal bridges are not accounted for in energy ratings, they can majorly limit the ability and the potential benefits of insulation and other passive solar design solution. Consequently even a house with a 6, 7 or 8 star-energy rating could be draughty in winter. Avoiding air-leakages and thermal bridges means minimising unwanted heat gain or loss and therefore reduces the energy needed to cool or heat a building.

The Role of Ceiling Fans & Exhaust Fans


ceiling fans

Ventilation is the active process of “changing” or replacing air to regulate temperature and moisture. It should always occur under controlled conditions, by opening windows or with ceiling or exhaust fans, NOT through gaps and air-leakage.

Exhaust fans

Exhaust fans should always be self-closing, so that the replacement of air is controlled and not accidental. With out a self closing mechanism they are one of the main contributor of air leakage.

However, if they are self-closing they are an effective way to replace air, especially in rooms where no natural ventilation is available, or where natural ventilation might not be sufficient, such as kitchens or bathrooms.

Ceiling fans
Ceiling fans are an easy and cost effective way to improve the indoor air quality in summer and also to gain points towards the desired energy rating stars.

Ceiling fans provide additional air movement/wind, increasing the Relative Air Velocity (‘wind chill factor’) resulting in the apparent temperature felt on exposed skin to be 3 °C colder than the actual air temperature, thereby reducing the need for additional cooling.

Nowadays there are so many efficient fans available on the market.
If choosing a ceiling fan make sure you get one with at least 3 speeds, with the lowest speed being slow enough to still move air, but not to create a cool feeling draught, so that you can use them in winter mode)


How to locate air-leakage and thermal bridges

hp photosmart 720
hp photosmart 720

Draughts + air-leakage
Older style buildings commonly have draughts and air-leakages due to unsealed windows and doors, and unsealed vents and exhausted fans, therefore, heat and air can escape. It is difficult to control the air movement. Other sources for draughts are gaps within or around insulation, vented skylights, gaps between floorboards, open fire places, around air conditioners and heaters, gaps around other wall penetrations, such as down lights, pipes, cables etc. .

Thermal bridges
A thermal bridge is an element or part of a building, which allows heat to travel through it more quickly than through other parts and is therefore responsible for unwanted heat loss or gain. A thermal bridge arises for instance when poor insulative materials touch each other, when gaps occur between insulative materials and structural surfaces, and when materials with different R-values/U-values come in contact with each other. These thermal bridges allow heat transfer from a warmer to a cooler material. The main thermal bridges in a building are located at the junctions of floor to the wall, wall to the roof, balconies and window and door frames.

How to locate draughts?

– Are there any visible gaps? For example is light coming through gaps around windows and doors?
– Are blinds or curtains moving when the windows are closed?
A lit candle can be used to check air movement, such as around windows and doors, vents, floorboards, junctions of floor to wall and wall to roof connections

Air Leakage + Thermal Bridges explained

Capture3Imagine it is winter. You wake up in the morning, put on your favourite hand-knitted wool socks and walk to the kitchen to have breakfast. But something is different today, your left toes are cold, you start to shiver and feel uncomfortable. What happened? The fabric on the toes has worn-out, there is even a little gap. The socks that used to keep your feet warm and cosy have a leakage and they are not able to keep you warm any more.

The same principle applies to a house. The building envelope’s task is to protect its occupants from the environment and to keep them warm. The building envelope needs to be a continuous shell, each little breach will negatively influence the overall performance and reduce the insulation’s potential benefits.

The following will explain where air-leakages in a building usually occur and how to prevent them.

Air-Leakage And Thermal Bridges

Thermal bridges and air leakages will increase the need of supplementary mechanical cooling and heating, but they will also increase the Relative Air Velocity and the Mean Radiant Temperature which will negatively influence the well-being and the comfort of the residents. By applying the right design features, natural ventilation and cross ventilation can be used to control indoor temperature and therefore reduce energy bills significantly. For these reasons, controlling the air movement is essential.

Read our next article if you want to know more about where air-leakage and thermal bridges typically can occur.